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ABSTRACT

Several methods for reconstructing the resistivity profile of a layered,
laterally homogeneous earth from direct current measurements are described.
These methods recover the resistivity of the earth layer by layer in a
recursive way, and require a very small amount of computational effort. They
are obtained by transforming the inverse resistivity problem into an equivalent
inverse scattering problem, and by applying efficient signal processing algorithms
such as the Schur, fast Cholesky or Levinson recursions to the transformed
problem. These algorithms operate on a layer stripping or layer accumulation
principle, and are shown to be related to previous reconstruction techniques
of Pekeris, Koefoed, Kunetz and Rocroi, and others.
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1. Introduction

The problem of reconstructing the resistivity of a layered earth

model from direct current measurements has been the object of sustained

interest over the years. In this problem, some direct current is injected

inside the earth by two current electrodes, and two voltage electrodes are

used to measure potential variations on the surface of the earth. The goal

is to reconstruct the resistivity profile as a function of depth from the

potential measurements on the surface of the earth. The existence of a

solution for this problem was established by Slichter [1] and Langer [2],

whose solution was however impractical from a computational point of view.

In 1940, Pekeris [3] obtained some recursions for reconstructing the earth

layer by layer. This reconstruction method was subsequently refined and

developed more fully by Koefoed [41, [5]. More recently, Coen and Yu [6]

used a transformation procedure of Weidelt r7] to formulate the inverse

resistivity problem of the earth in such a way that the Gelfand-Levitan

method of inverse scattering theory could be applied to this problem. Another

layer by layer reconstruction method was also proposed by Kunetz and Rocroi [8],

and it will be shown below that their algorithm can be identified with the

Levinson recursions of linear prediction [9], which in fact arise in a large

number of signal processing situations.

The objective of this paper is to give a unified account of layer by

layer reconstruction techniques for the earth resistivity, which includes
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previous reconstruction methods, and new ones as well. The common

framework that will be used for this presentation is that of inverse scattering,

and in this context, we will show that layerwise reconstruction procedures

can be viewed as differential inverse scattering methods of the type discussed

by Bube and Burridge [10], and Bruckstein, Levy and Kailath [11] (see also

[12] - [14]). Since the equation describing the potential of the earth is

elliptic, the inverse resistivity problem of the earth is not an inverse

scattering problem. However, by writing the equations for the earth's potential

as two coupled first-order equations, we will be able to introduce a matrix

whose elements can be viewed as obtained by analytic continuation of the elements

of the scattering matrix associated to a true scattering system. In this

context, we show that the transformation of Weidelt [71 and Coen and Yu [6]

has for effect to map solutions of the potential equation into solutions of

a wave equation whose scattering matrix is the one mentioned above.

The advantage of formulating the inverse resistivity problem as an

inverse scattering problem is that the relation between layerwise reconstruction

methods (which are also called layer stripping techniques) for this class

of problems, and efficient signal processing algorithms such as the Schur,

fast Cholesky and Levinson recursions has been the object of close scrutiny

[10], [11], [15]. We will show for example that the recursions obtained by

Pekeris [3] and Koefoed [4], [5] for reconstructing the earth resistivity

are just a modification of the Schur algorithm [16], [17] which is now widely

used in linear estimation theory, or network synthesis [18]. The continuous



-4-

parameter version of this algorithm, which takes the form of a Riccati

equation, will also be related to the work of Langer [2] and Slichter [1].

In addition, it will be shown how efficient algorithms such as the fast

Cholesky or Levinson recursions can be used to recover the earth's resistivity.

The solution based on the Levinson recursions turns out to be identical to

the method proposed by Kunetz and Rocroi [8].

This paper is organized as follows. In Section 2, the inverse resistivity

problem is described and its relation with an equivalent inverse scattering

problem is examined. Section 3 describes the solution of the inverse

resistivity problem via the Schur algorithm and its relation to the work of

Pekeris, Koefoed and Langer. In Section 4, it is shown that after applying

a transformation similar to that of Weidelt [7], the fast Cholesky and Levinson

recursions can be used to recover the resistivity of the earth. The relation

of these methods with those of Coen and Yu, and Kunetz and Rocroi is also

discussed. In Section 5 we describe how the given data, which is usually

the apparent resistivity for the Schlumberger electrode configuration [5],

can be used to compute the functions used to perform the inversion with the

Schur algorithm or the fast Cholesky and Levinson recursions, which are

respectively Slichter's kernel function [1], [5] and a certain fictitious

current source profile obtained by Maxwell's method of images ([8], [5],

Chapter 10). Finally, Section 6 contains some conclusions and some suggestions

for further research.
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2. Problem Formulation

The inverse resistivity problem of the earth is formulated here as

in [1] - [6]. It is assumed that the earth conductivity C(z) varies with

depth only, and in a first stage we consider the idealized problem where

some direct current flows inside the earth through a single electrode, and

where the potential ~(O,r), where r denotes the radial distance to the

current electrode, is measured on the surface of the earth. The objective

is to reconstruct C(z) from 1(O,r). In a second stage, wew-ill examine

the more realistic situation where the Schlumberger electrode configuration

is used to measure the apparent resistivity

2'(T 2 2
p r ) (2.1)a(r) = -I r a 4 (Or). (2.1)

where c(O,r) is the potential obtained for a single current electrode,and

I is the current supplied by the source. The objective in this case will

be to reconstruct G(z) from p (r).

When a single current electrode is used, by selecting this electrode

as the origin of cylindrical coordinates (z,r,8), the current equations are

j(z,r) = gc(z) VP(z,r) (2.2)

V-j(z,r) = 0 (2.3)

where P(z,r) is the potential, and

(z) ,r)
j(z,r) = r (2.4)

r (z, r)
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is the decomposition of the current density in its vertical and lateral

components. The boundary conditions for these equations are

(0O,r) = - I 6(r) (2.5)
2'T r

where I is the total current supplied, and P(z,r) + 0 and j(z,r) + 0 as

R = (z + r )1/2 + co. By combining (2.2) and (2.3) we obtain the

potential equation

dzA~(z,r) + dz n O(z) a- c(z,r) = 0 (2.6)

2 2

where A = Laplacian = - + + , which is the equation usually2 r r 2
az 3r

used to analyze the inverse resistivity problem. However, instead of

focusing our attention on equation (2.6), we will use here the first-order

equations (2.2) - (12.3) to formulate the inverse resistivity problem.

Let
CO

Hn f(x)] = f(r) J (Xr)rdr (2.7)

be the Hankel transform of order n of a function f(-), and denote

(z,X) = H0[f(z,r)] (2.8a)

oz z
(Z,X) = H0[j (z,r)] (2.8b)

(z,A) = H1 j (z,r)] . (2.8c)

By using the property

1 f(r) + d (2.9)
H I[ f(r) + - f(r)] = XHl [f(r)] (2.9)O r dr 1
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Hl[dr f = -AXH [f(r)] (2.10)
ldr 0

of Hankel transforms, the equations (2.2) - (2.3) become

j (z,X) =- Aa(z) 4(z,X) (2.11a)

(z,) = 0(z) dz (z,X) (2.11b)

d .z

Xj (z,X) + dz (z,) = 0 . (2.12)

I~r
Eliminating j , and denoting

A (z,) = -z - (z) ,(X(z 3 (Z' dz ~(Z'A) (2.13)

this gives

-d =Z [ ° ]c)[] (2.14)
z(z, A (z> 0 (z,)

which is the analog of the telegrcapher's equation

[(z, X)1 0 -jXZ(z) v(z,X)
dz. [I . - I (2.15)

[icz,% - jXZ-l (z) 0 '(zX)

satisfied by the voltage and current along a nonuniform transmission line,

which was the starting point of the inverse scattering problem considered

by Bube and Burridge [10], and Bruckstein, Levy and Kailath [11]. Note however

that there is an important difference between (2.14) and (2.15): X is

replaced by jX. This difference arises from the fact that the equation

satisfied by t is elliptic, whereas the equation satisfied by the voltage

along a nonuniform transmission line is hyperbolic.
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This difference prevents us from formulating the inverse resistivity

problem as an inverse scattering problem, since inverse scattering theory

applies only to hyperbolic operators. However, by using a mapping

technique originally introduced by Weidelt ' 7] (see also Coen and Yu [6]),

we will show below that the inverse resistivity problem can be transformed

into an equivalent inverse scattering problem.

The initial conditions for the differential system (2,14) are '(0,),

which is obtained by taking the Hankel transform of the observed potential

P(QO,r) on the surface of the earth, and

I
1(°'0,) - 27X ' (2.16)

Following [111, we introduce the normalized variables

M(z,X) = /' (z) (z,) (2.17a)

N(z,) = a l/2(z) ) (2.17b)

so that

N(Z, o) ( Z) )2 A.(2.18)
N (-z,k)

Then, if the down and upgoing waves are defined as

D(z,X) = - (M(z,k) + N(z,X)) (2.19a)
2

U(z,X) = 1 (M(z,k) - N(z,X)), (2.19b)

the system (2.14) can be rewritten as

D(z,) k(z (z,X)
d ] (2.20)

dz u(z,X) k(z) _ v (zIX
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A id
where k(z) = 2 dz nC (z) is the reflectivity function. By discretizing

2 dz

(2.20), we obtain the elementary filter sections described in Fig. 1. These

sections show that the waves D(z,A) and U(z,X) propagate in opposite down-

ward and upward directions, and for a layer of thickness A at depth z,

D(z,X) and U(z,X) are attenuated by a factor exp (-XA) and are partially

reflected in the proportion k(zjA.

We have that k(z) - 0 for z < 0, and we assume that k(-) is summable

and has compact support, so that there exists L > 0 such that k(z) - 0

for z > L. In this case the two-component system (2.20) can be viewed as

perturbed form of the free system

[ _z,) rD(ZX)
dz 1 i- XO OX II 1 (2.21)

[ jU0 (z,
1 0 A ] [ 0 (z, X) (2.21)

where the perturbation k(') is small, so that for z < 0 and z > L, the

solutions of (2.20) are identical to those of (2.21), i.e.

D(z,X) = D (X)e (2.22)

U(z,A) = U (X)eXz

for z < 0, and

D(z,X) = DR ()e

(2.23)
U(z,X) = UR(A)e

for z > L. By linearity, we have
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= S( ,) , (2.24)

UL (X) UR ()

where

TL(') RR ' ( )

S(.) = (2.25)

RL (9) TR(X)

is the scattering matrix of (:2.20). As shown in Fig. 2, this matrix relates

the incoming and outgoing waves- for the aggregate medium obtained by

composing the elementary layers described in Fig. 1.

The motivation for calling S(X) a scattering matrix is that by setting

A = jk with k real in (2.20), we obtain a two-component scattering system

of the type discussed in 119], 1201, 111], 115]. The scattering matrix

of such a system is S(jk). It has the property that

S (jk) S(.jk) = I (2.26)

for k real, where the superscript H denotes the Hermitian transpose, and

it obeys the reciprocity relation

TL(A) = TR(A) = T(A) (2.27)L ) TR ( (2.27)

for all A. In addition, since k(') is summable, the two-component wave

system (2.20) with X = jk has no bound states ([19], Chapter 1), and T(X)

is analytic in the right half-plane. Similarly, k(z) -- 0 for z < 0 implies

that RL(X) is analytic in the right half-plane, and the assumption that k(.)

has compact support implies that RR(X) is meromorphic in the right half-plane

1211.



Thus, RL(A) and T(A) with Re X > 0 can be viewed as obtained by

analytic continuation of RL(jk) and T(jk), whereas the assumption that

k(z) has compact support is necessary to guarantee the existence of RR(X)

in the right half-plane (note that it may not be defined at some points).

However, since our analysis below will focus exclusively on RL(X), this

assumption may easily be removed.

For the problem considered here, the earth is probed from its surface,

so that UR(A) = 0 in (2.24) and the reflection coefficient RL(X) can be

expressed as

R() = U () = o)(o,)- - X, ') (2.28)
RL() DL() (0)(0,) + 1(0,Ik)

where 4(O,X) is the transform of the observed potential, and i(O,X) is given

by (2.16). In the resistivity prospecting literature RL(X) is known as the

modified kernel function ([5], p. 202). It is related to Slichter's kernel

function K(X) by

RL(Ak) - K(A) + 1 (2.29)

where K(X) is the normalized impedance of the resistive medium extending

over [0,o), i.e.

M(K(X) (0,X)K(=) = a (0)

=dk(oX,) ^ *(2.30)
d- P(z,X)

z=0
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Since K(X) and RL(A) are entirely specified by the given data, the

inverse resistivity problem can be posed as follows: given K(X) or RL(X)

for X real and positive, we want to reconstruct k(z) and O(z). In theory,

this can be done by using the fact that RL(X) is analytic in the right

half-plane to obtain its value on the imaginary axis, and then by using

any of the inverse scattering techniques described in [10], [11] to recover

k(z) from RL(jk). However, this basic scheme can be implemented in a

variety of ways, which we will now discuss and compare.
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3. The Schur Algorithm and Related Methods

The reconstruction techniques which will be examined in this section

can all be viewed as variants of an algorithm introduced by Schur [161 in

1917 (see also Akhiezer 117]) to test the boundedness of an analytic function

inside the unit circle, and which solves the inverse scattering problem for

a discrete medium [18]. This algorithm was subsequently extended to con-

tinuous two-component wave systems in 11l], 115], and we will now adapt

this version of Schur's algorithm to the system (2,20).

We denote by

u (z,X)
P~L(z ' ) D(z,k)

the reflection coefficient associated to the section of the resistive

medium extending over Iz,o3). By using the differential equation (2.20)

for D(z,X) and U(z,X), we find that R L(z,X) satisfies the Riccati equation

d 2
d RL(ZX) = 2XR (z,X) + k(z) (R(z,) - 1), (3.2)

with the initial condition

RL(0,X) = RL (X) (given) (3.3)

The equation (3.2) depends on k(z), and therefore if we want to use it

to reconstruct k(-), we need to express k(z) as afunction of RL(z,X). To

do so, note that since RL(.z,) is the analytic continuation of RL(z,jk)

with k real, where RL(z,jk) + 0 as k + O [11], it can be expanded as

RL(z,X) = Z ri (3.4)
i=1
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so that after substitution in (3.2), we obtain

k(z) = 2r (z) = lim 2X R (z,X) (3.5)
X-1 L)

By substituting (3.5) inside (3.2), RL(z,X) can be propagated recursively,

and in the process we reconstruct k(z) for all z. This gives also C(z)

by noting that

rz
C(z) = (.0) exp (-2 J k(s)ds) (3.6)

where C (0) is the conductivity on the surface of the earth.

The recursions (3.2), (3.5) constitute the Schur algorithm. This

reconstruction procedure can be viewed as the continuous parameter version

of the method proposed by Pekeris in [3] (see also [5], Chapter 10). To

see this, assume that the conductivity function a(z) is approximated by

a piecewise constant function, so that the earth can be viewed as constituted

of N homogeneous layers of thickness ti and conductivity i., 1 < i < N.

Then, by discretizing (3.2) and assuming that the thickness of every layer

is sufficiently small so that terms of order t. can be neglected, we obtain

2At. (R.(X) - k.)

i+1 = e (1 - k.R.(X))

with RO(X) = RL (X), where

Ri() - RL jl ) (3.8)

is the reflection coefficient obtained by stripping away the i first layers

of the resistive medium, and by assuming that the current electrode is

located on top of the i+l th layer. From (3.5), we find also that

G - a 2Xt.
i i+l 1

k. = = . clim e R. (X) (3.9)
1 0 i +i+l



or equivalently

n Ri () - n k 2Xt (3.10)
fli i1

as X + a, which is precisely the formula used by Pekeris to reconstruct t.

and k.. From (3.10), we see that as X + c, the function R. (X) can be
1 1

approximated by a line whose slope is -2ti and whose intersection with

the vertical axis is £nk.. Consequently, by combining (3.7) and (3.10),

R. (A), ti and ki can be computed recursively for 1 < i < N, and (3.9) can

be used with the initial condition Oc = (0) to obtain c. for all i.

Instead of propagating the reflection coefficient RL(z,A), we could

choose to propagate the normalized impedance, i.e. Slichter's kernel

K(z,) = M(zX) (3.11)
N(z,X)

which is related to RL(z,X) by the relation

K(z,) - 1
L(zA) K(z,A) + 1 (3.12)

By noting that

rM (ZX) rA-k(z) X M(z,X)

[ N(z,) - X k(z) N(z,X) 

we find that K(z,A) satisfies the Riccati equation

d K(z,A) = - 2k(z)K(z,A) + A(K 2(z,) - 1) (3.14)

with the initial condition K(0,A) = K(X) (given), which was first derived

by Langer [2]. By expanding K(z,X) as

. 0 -i
K(z,) = J K.(z)A (3.15)K~zi=0 1
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we can identify K (z) = 1, and

k(z) = K (z) = lim X(K(z,X) - 1). (3.16)

By combining (3.14) and (3.16), we can therefore propagate K(z,X) recursively,

and in the process reconstruct k(z). The difference between this recon-

struction method and that of Langer 12] is that Langer did not recognize

that the inversion could be performed recursively. Instead, he showed that

(i)
k(O) = K(O0) and that all derivatives k (.0) can be expressed in function

of K. (0) for j < i+l, which by using the Taylor series expansion

00 i

k(z) = Z ki) (0) z (3.17)
i=0 i!

implies that k(z) can be reconstructed from

00

K(X) = 1 + i- K. (0)X (3.18)
i=1 I

which is the given data.

An even better inversion procedure which can be used to reconstruct

O (z) directly (instead of k(z)) is to consider the unnormalized impedance

Z(z,X) = -l(z)K(z, ) = z(z,X) (3.19)

(z, Xt)

which was called the "resistivity transform" by Koefoed ([4], [5], Chapter 3).

Then Z(z,X) satisfies the Riccati equation

d Z(z,X) = X(a(z)Z2(z,X) - C-lz)) (3.20)
dz

and by using the expansion (3.15) with the observation that K (z) = 1,

we find that

-1
a (z) = lim Z(z,X) (3.21)
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so that cY(z) can be recovered by propagating (3.20) and (3.21) recursively.

This reconstruction procedure is the continuous analogue of the recursions

-1
Z. (A) -oi tanh(At.)
1 0 I (3.22)

i+l 1 - i tanh (Xti)Z (3.22)

with

-1
= lim Z (A) (3.23)

which were obtained by Koefoed [4], 15] to reconstruct a discrete resistive

medium constituted of N horizontal homogeneous layers of thickness ti and

conductivity i., 1 < i < N, where Z.(X) is the impedance obtained by
1 -1 -

removing the i first layers of the medium. A straightforward discretization

of (3.20) - (3.21) can in fact be used to obtain the recursions (3.22) -

(3.23).
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4. Fast Cholesky and Levinson Recursions

The inversion procedures that were described above use either equations

(3.2), (3.5) to reconstruct k(z), or equations (3.20) - (3.21) to reconstruct

(z). Since these methods are variants of the Schur algorithm considered in

[11], they suffer from the same limitations. The most significant of these

is that we need to take the limit of 2XRL(z,X) or of Z(z,X) as X - I, which

is not a very reliable numerical operation. To eliminate this difficulty,

we will now show that the problem can formulated in a way such that

efficient signal processing algorithms such as the fast Cholesky or Levinson

recursions [ 9] , 1221' - 12-3] can be used.

To do so, we will use the method of Weidelt [ 7] (.see also [6]) to

convert the inverse resistivity problem into an equivalent inverse

scattering problem. The key step is to view the functions Xk(z,X), X4(z,X),

XD(z,X) and XU(z,X) as Laplace transforms of some functions $(z,t), f(z,t),

V V
D(z,t) and U(z,t), so that if

L[f(t)] { f(t) exp(-Xt)dt (4.1)

denotes the Laplace transform of a function f(-), we have

V V
kX(z,X) = L[f(z,t)],X4(z,x) = L[f(z,t)] (4.2a)

V V
XD(z,X) = L[D(z,t)],XU(z,X) = L[U(z,t)] . (4.2b)

By multiplying (2.14) and (2.20) by X, and taking inverse Laplace transforms,

we obtain
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I(z,t) r 0 - (z) - (z ,t)a9z ) =a v1t "[(4.3)(-zt) 0 ~(z,t)
and

DL(z,t) - k(z) D(zt)

U (z' Q k(z) [ u(z t

which are respectively the telegrapher and two-component wave equations

considered in [11].

We can then apply all the inversion techniques described in [10], [11]

to reconstruct k(z) or U (z). However, before doing so, it is useful to

interpret the relations (4.2). We note first that if 4(zr) is the potential

V
of the earth at depth z, then f(z,r) is related to f(z,t) by

.(z,r) = I (z,)J 0 (Xr)XdX

=, j(z~t) dt 2 1/2j0 ' (t2 + r21/2 )

where we have used the identity

{ exp -Xt J0 (Xr)dX 2 1/2(4.6)
0 0 (t2 r 2+ 1/2

The transformation (4.5) has an interesting property: it maps solutions of

the potential equation (2.6) into solutions of

92 92 V dV
(9? - -t2 ) ¢(zt) + d Zn (z) ¢(z,t) = O (4.7)z2 2 dz az
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which is an hyperbolic equation. To see this, note that G (r,t) = (t +r2) 1 /2

is the Green's function of the Laplacian, i.e.

AG (t,r) = - 26(t) r (4.8)
0 r

Then, the operator

~2 + 2 d

A=- (a-2 -T + - + 9 nG (z) (4.9)

can be applied to both sides of (_4.5), and by using the identity (4.8)

and integrating by parts, we obtain

A~(z,.r) = (W(z,t)) G(.t,r)dt
.0

6(r) V 1
- 2 (z,0) - a (zO) - (4.10)

r at r

where W denotes the perturbed wave operator

- A 92 2 2
W (=z2 2) + Tz nc(z) . (4.11)~z 2 ~t2 

The identity (4.10) shows that the solutions of Af(z,r) = 0 are mapped into

solutions of

AV
W4(z,t) = 0, (4.12)

with the initial conditions

V a
(z,0) = 0, t '(z,0) = 0 (4.13)

which correspond to the fact that the system (4.12) is originally at rest.

Fast Cholesky Recursions

Then, we can use either the fast Cholesky or Levinson recursions to

solve the inverse scattering problem associated to the system (.4.4). However,
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as shown in [11], 115], in order to apply the fast Cholesky recursions, the

V V
probing waves D(O,t) and U(O,t) on the surface of the medium must have a

very specific form, i.e.

V
D(O,t) = 6(t) + d(O,t)l(t) (4.14a)

U(O,t) = u(O,t)l(t) (4.14b)

where l(t) is the unit step function, and where d(O,t) and u(O,t) are

V
smooth functions. Thus, D(O,t) must contain a leading impulse which acts

as a tag indicating the wavefront of the probing wave.

For the problem considered here, the potential inside the earth

can be expressed as

(z, r) ( (2 2 + f(z,r)) (4.15)

where the first term in (4.15) is the potential of an homogeneous earth

with conductivity G (0), and where f(z,r) is the perturbation away from

this reference potential which is due to inhomogeneities in the earth's

resistivity. Then, if fi(z,X) A H If(z,r)],

(°', ) = 27Tc(0) \7+ f(0X)) (4.16)

1
so that by using the expression (2.18) for i(0,X) and denoting h(X) = - f(O,X),

we obtain

D(0,X) = /2 + h(X)) (4.17a)

1/2 (0)

U(0,X) = 2 h(X) . (4.17b)
2'JC0 (0)

Consequently, if Xh(X) = LIh(t)], we can write

V I V
D(O,t) = 1/2 (6(t) + h(t)) (4.18a)

271 (0)

V I V
U(0,t) = h (t) (4.18b)

2r 1 /2 (0)
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1/2 V V
so that modulo multiplication by I/27rTU (0), the waves D(O,t) and U(O,t)

V
have the form (4.14). The relation d(O,t) = u(O,t) = h(t) for these

waves indicates also that the earth's surface can be modeled as a perfect

reflector. This corresponds to the fact that the air above the surface of

the earth acts like a perfect insulator.

Then, a consequence of the special form (4.14) of the probing waves

is that the waves inside the scattering medium described by (4.4) must

have the form

V
D(z,t) = 6(t-:z) + d(z,t)l(t-z) (4.19a)

U(z,t) = u(z,t)l(t-z) . (4.19b)

By substituting (4.19) inside (4.4), and identifying Coefficients of the

impulse 6(t-z) on both sides of (4.4), we find that

(aZ + a d(z,t) = - k(z)u(z,t) (4.20a)

(z a - tu(z,t) = - k(z)d(z,t) (4.20b)

with

k(z) = 2u(z, z+) . (4.21)

After discretization, the recursions (4.20) - (4.21) constitute the

fast Cholesky recursions [11], [15]. The initial data for these recursions

V
is d(O,t) = u(O,t) = h(t). The relations (4.20) - (4.21) can be viewed as

using a layer-stripping principle to identify the parameters of the scattering

medium. Thus, assume that the waves d(z,t) and u(z,t) at depth z have
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been computed. The reflectivity function k(z)1 is obtained from (.4.21)

and is used in (4.20) to compute the waves d(z+A, t) and u(z+A, t) at

depth z+A, as shown in Fig. 3. The effect of the recursions (4.20) -

(4.21) is therefore to identify and strip away the layer [z, z+A). Note

that the Schur recursions of Section 3 operated according to a similar

principle.

The main feature of the fast Cholesky recursions is that they are quite

efficient: let L be the maximum depth over which we want to reconstruct

the medium, and let A = L/N be the step-size which is used to discretize

V
the fast Cholesky recursions. Then, by observing that h(t) needs only to

be known for 0 < t < 2L, where 2L is the two-way travel time to depth L,

and computing d(z,t) and u(z,t) at depth z only for 0 < t < 2L - z, we

find 111] that only 0(N 2 ) operations are required to recover k(z) for

0 < z_< L. In addition, it was shown in [24] that this algorithm is

numerically stable.

Levinson Recursions

An alternate approach is to formulate the inverse scattering problem in

terms of integral equations. Consider the Marchenko integral equations

mi1 1 (Zt) + t V(- z ,T)dT + h(t+T)m21(z ,T)d T = 0 (4.22a)

-2(z,t) 1 Jhht+Tm ((z,zT)dTdV ft Vh(z+t) + m (z ,t) + 11 t

+ h(t-T)m 21 (z,T)dT = 0 (4.22b)
-z
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with -z < t < z. Then, it is shown in [11] that the reflectivity function

k(z) is given by

k(z) = - 2m21(z,' z-) , (4.23)

and that mll(z,-) and m21(z,-) can be propagated for increasing values of

z by using the Levinson recursions

aZ at) mll (zt) = - k(z)m2 1 (z,t) (4.24a)

( aZ at )m 2l (z,t) = - k(z)ml (z,t) (4.24b)

which are obtained by exploiting the Toeplitz and Hankel structure of the

kernels appearing in (4.22). The initial conditions for these equations

are

mll (O0,) = m21(-,0) = 0 , (4.25)

and in the propagation of (4.24) we use the boundary conditions mll(z,-z) = 0

and (4.23), where

V (z V
m21 (z,z-) = - h(2z) - J h(z+T)mll(z,T)dT

h (z-T)m2 1(z,T)dT . (4.26)

After discretization, the Levinson recursions can be propagated as shown in

Fig. 4. The complexity of these recursions is identical to that of the

fast Cholesky equations, i.e. they require 0(N
2 ) operations to reconstruct

k(z) for 0 < z < L, where N is the number of subintervals which are used to

discretize the interval [0,L]. An interesting property of the fast Cholesky

and Levinson recursions (4.20) and (4.24) is that they have the same form.
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However, the support of the functions mll(z,t) and m21(z,t) is -z < t < z,

whereas the support of the waves d(z,t) and u(z,t) is z > t. In some sense,

the Levinson recursions can be viewed as being the complement of the fast

Cholesky recursions: they rely on a layer accumulation principle where at

depth z we identify a new layer and accumulate it to the part [O,z] of the

medium which has already been identified, whereas at each step the Schur

and fast Cholesky recursions identify and strip away the same layer from

the part [z,i) of the medium which is yet to be identified. An additional

difference between the fast Cholesky and Levinson recursions is that the

fast Cholesky recursions correspond to an initial value problem where

all the information about the medium is contained in the initial conditions

d(O,t) and u(O,t), while for the Levinson recursions the identification

of a new layer requires at every step the evaluation of the integral (4.26)

V
where the information about the medium is contained in h(t).

It turns out that the above reconstruction procedure for the earth's

resistivity is not new, and appears in disguised form in Kunetz and

Rocroi [ 8] for the case of a discrete medium with layers of equal thickness.

However, Kunetz and Rocroi did not identify the recursions that they obtained

as the Levinson recursions.

The previous reconstruction procedure can also be related to that of

Coen and Yu [6] by noting that if

A(z,t) = mll(Zt) + m21(z,t) , (4.27)

then A(z,t) satisfies the integral equation (see [11])

V rZ V V
h(z+t) + A(z,t) + J (h(t-T) + h(t+T))A(z,T)dT = 0 (4.28)

-Z
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with -z < t < z, which is the equation used by Coen and Yu. Then

- =(z) 1/2 + A(z,t)dt (4.29)

-Z

so that a(z) can be reconstructed directly from A(-,-). The advantage of

this method over the procedure described above is that since C(.) is

smoother than k(-), it is easier to reconstruct. However, Coen and Yu

were unaware of the existence of a fast algorithm to solve the integral

equation (4.28).
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5. Interpretation and Computation of the Inversion Data

The inversion procedures described above rely on RL(X), or equivalently

V
on Slichter's kernel K(X), and on the function h(t) to reconstruct the earth's

resistivity. But the given data is the apparent resistivity p (r) obtained

from the Schlumberger electrode configuration. The problem of computing K(X)

from p (r) was solved by Ghosh [25] who used the expression

00

K(X) = a(0) pa(r)J (Xr)dr (5.1)

which is obtained by combining (2.16) and (2.30), so that

2Y (0)
K(X) - I (0,=) , (5.2)

and by using the identity (2.10) of Hankel transforms and the definition

(2.1) of the apparent resistivity. Then, by substituting

x -
r = e , X = e-Y (5.3)

inside (5.1) and denoting

P a(X) = pa(eX) K(y) = K(e -Y (5.4)

we obtain the convolution integral

K(y) = (x)Jl(exp(-(y-x)))dx (5.5)

which can be implemented by discrete convolution techniques [26].
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V
The problem of computing h(t) from p (r) is more difficult. The

V
first step is to obtain a physical interpretation of h(t). From (4.15), we

find that

(0,r) -(k 2 (t) t )(5.6)
+ + r 2)l/

The first term in this expression is the potential associated to a homogeneous

earth with conductivity G(0), and the second term describes the effect of

inhomogeneities in the earth's resistivity. However, to describe the potential

on the surface of the earth, instead of assuming that the earth's resistivity

is inhomogeneous and that a single current source is located at the origin

of coordinates, by Maxwell's method of images ([27], [5], p. 197) we can

assume that the earth is homogeneous with conductivity C(0), but that some

additional fictitious current sources have been added on the vertical axis,

V
In this case, if h(t)dt is the strength, relative to the strength I of the

actual current source, of a source located at depth t along an infinitesimal

segment of length dt, the potential created at the point (O,r) on the surface

of the earth is

V
I h (t)dt (57)

2TY (0) (t2 2 1/2

Note that in order to guarantee that the vertical component of the current

density created by the fictitious sources is zero on the surface of the earth,

V
the function h(t) must be symmetric with respect to the origin, i.e. sources

must be located above the surface of the earth as well as below. By superposition,
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V
the function h(t) appearing in (5.6) can therefore be viewed as the fictitious

current source profile equivalent to the inhomogeneous conductivity profile

Cr(z).

V
The function h(t) was the starting point of the inversion method of

Kunetz and Rocroi [8]. However, it is not as easy to compute this function

from the potential C(O,r) or the apparent resistivity p (r) as it appears,

V
To see why this is so, note from (4.16) that in order to obtain h(t) from

f(O,r), we need first to compute the Hankel transform 0(0,X) followed by an

inverse Laplace transform. But inverse Laplace transforms are hard to

implement. Instead, it is preferable to discretize the integral equation (5.6)

and to solve the resulting system of linear equations. In terms of p (r), we

find from (2.1) that

p (r) - ) 1 + 2r3 h ) dt (5.8)
~a GM) r 0h (t2 + r )3/2

(see [ 8], [5], Chapter 10), which can also be discretized and inverted.

An alternate method of computing Y(t), which was proposed by Kunetz and
V

Rocroi [8 ], is to denote by H(k) the Fourier transform of h(t) and to introduce

the spectral density function

W(k) = 1 + H(k) + H(-k) . (5.9)

Then, by observing from (4.18) that the left reflection coefficient of the

two-component scattering system is

RL(jk) = H(k)/(l + H(k)) (5.10)

and is bounded by one, i.e. IRL(jk)| < 1, we can conclude that the spectral

density W(k) is positive, i.e. W(k) > 0 for all k. By using the integral

equation (5.8), we also find that
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3 oo
2r

ar - a (o) W(k)K1 (kr)kdk (5.11)

where K1 (') is the modified Bessel function of order one. The problem of

inverting the modified Hankel transform (.5.11) is analogous to that of inverting

a Laplace transform, but by using the positivity of W(k), Kunetz and Rocroi

were able to formulate the inversion of (5.11) for a discrete set of sampled

values of r as a quadratic programming problem. Then, given the reconstructed

V
W(k), h(ItI) is the inverse Fourier transform of W(k) - 1.



-31-

6. Conclusion

In this paper, we have considered the problem of reconstructing the

resistivity profile of a layered earth probed by direct current from

potential measurements on the surface of the earth. It was shown that this

problem could be transformed into an equivalent inverse scattering problem,

to which efficient signal processing algorithms such as the Schur, fast

Cholesky and Levinson recursions can be applied. These algorithms recon-

struct the resistivity of the earth layer by layer in a recursive way, and

require only a small number of operations. In this context, it was shown

that the recursions obtained by Pekeris 13] and Koefoed 14], [51 for

recovering the resistivity of the earth were identical to the discrete

Schur recursions, and that the reconstruction method of Kunetz and

Rocroi 181 was actually based on the Levinson recursions.

One difficulty associated with these reconstruction methods is that

they do not operate directly on the given data, which is the apparent

resistivity of the earth, but on Slichter's kernel K(X), or on the

V
fictitious current source profile h(t) equivalent to the inhomogeneous

conductivity profile & (z). Efficient convolution techniques exist to

compute Slichter's kernel from the apparent resistivity, but the problem

V V
of computing h(t) is more difficult. No efficient method of obtaining h(t)

exists, short of brute force discretization of the integral equation satisfied

V
by h(t). This problem deserves therefore further attention. Another
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topic of research, which is currently under investigation, is the study of

the numerical behavior of the algorithms described above when they operate

on synthetic or real data. The fast Cholesky and Levinson recursions

are known to be stable, but the addition of noise, or imperfections in

the data due to bandlimitations, can degrade the performance of these

algorithms. It would therefore be desirable to develop inversion techniques

which can incorporate a priori information on the resistivity profile and

on the noise level.
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FIGURE CAPTIONS

Fig. 1: Elementary filter sections associated to the two-component System.

Fig. 2: The aggregate medium obtained by composing the elementary filter

sections.

Fig. 3: (a) Propagation of d(z,t); and b) propagation of u(z,t) via the

fast Cholesky recursions.

Fig. 4: (a) Propagation of m11 (z,t); and b) propagation of m21 (z,t) with

the Levinson recursions.
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